# The First Enantioselective Synthesis of (2R,2'R)-threo-(+)-Methylphenidate Hydrochloride 

Mahavir Prashad,* Hong-Yong Kim, Yansong Lu, Yugang Liu, Denis Har, Oljan Repic, Thomas J. Blacklock, and Peter Giannousis

Process Research \& Devel opment, Chemical \& Analytical Devel opment, Novartis Institute for Biomedical Research, 59 Route 10, East Hanover, New J ersey 07936

## Received October 26, 1998

( $\pm$ )-threo-M ethylphenidate hydrochloride (Ritalin hydrochloride) is a mild nervous system stimulant marketed for the treatment of children with attention deficit hyperactivity disorder (ADHD). (2R,2'R)-(+)-threo-Methylphenidate hydrochloride (1) has been reported to be 5 times ${ }^{1}$ to 38 times $^{2}$ more active than the corresponding (2S,2'S)-(-)-threo-methylphenidate hydrochloride. The clinical relevance of this difference to the use of racemate versus the pure eutomer is yet to be determined. We were therefore interested in developing a process that is suitable for manufacturing the active ( $2 R, 2^{\prime} R$ )-enantiomer 1. In the event that a ready supply of $( \pm)$-threomethylphenidate hydrochloride is available, one must contrast the obvious choice of classical resolution to a total synthesis. We recently reported the resolution of ( $\pm$ )-threo-methylphenidate by an enzymatic hydrolysis, ${ }^{3}$ which was followed by other patent literature. ${ }^{4,5}$ Several classical resolution methods have been reported for the resolution of ( $\pm$ )-threo-methylphenidate free base or ( $\pm$ )-threo-ritalinic acid toward the preparation of $\mathbf{1 .}^{1,6-9} \mathrm{~A}$ synthesis of $\mathbf{1}$ has also been reported recently ${ }^{10}$ that utilizes an enantiopure amino acid (D-pipecolic acid) as the starting material, which in turn was prepared by the resolution of ( $\pm$ )-pipecol ic acid using tartaric acid, making this route unattractive for a scale-up in comparison to the direct resolution of $( \pm)$-threo-methylphenidate itself. Our goal was to develop an enantioselective synthesis of 1 that is suitable for manufacturing of this drug substance on a commercial scale. In this paper we report the first enantioselective synthesis of (2R,2'R)-threo-(+)methylphenidate hydrochloride (1).

Our synthetic strategy toward $\mathbf{1}$ is depicted in Scheme 1. We rationalized that the piperidine ring system would be furnished by the cyclization of the stereosel ectively substituted 1,5-diol such as B with an amine, after

[^0]
## Scheme 1






activation of the hydroxyl groups, as in A. The methyl ester functionality would be introduced by the displacement of the chiral auxiliary with methoxide. One possible method for accessing compounds such as B enantioselectively would be the asymmetric aldol condensation of an aldehyde ( $\mathbf{C}$ ) with the (Z)-boron enolate derived from N -phenylacetyl-(R)-4-substituted-2-oxazolidinone (D). The erythro-selective syn aldol addition of aldehydes with (Z)boron enolates is well-known. ${ }^{11}$

We opted to use (R)-4-phenyl-N-phenylacetyl-2-oxazolidinone (3) and 5-chlorovaleraldehyde (4) as the starting materials for the key aldol reaction (Scheme 2). Compound $\mathbf{3}$ was easily prepared by the new method developed in our laboratories, ${ }^{12}$ a direct coupling of phenylacetic acid (2, 1.14 equiv) with the cheap and readily available (R)-4-phenyl-2-oxazolidinone in the presence of pivaloyl chloride and triethylamine, in $78 \%$ yield. The aldehyde $\mathbf{4}$ was prepared by the oxidation of commercially available 5-chloropentanol with NaOCl and TEMPO, using a known method. ${ }^{13}$ The key aldol condensation of 3 with $\mathbf{4}$ was performed under known conditions, ${ }^{11}$ which afforded the desired single diastereomer 5, as confirmed by ${ }^{1} \mathrm{H} N M R$, in $78 \%$ yield as an oil. ${ }^{1} \mathrm{H}$ NMR of the crude 5 did not indicate the presence of the undesired diastreomer. Similar results were obtained using either $\mathrm{CH}_{2}{ }^{-}$ $\mathrm{Cl}_{2}$ or toluene as the solvent. These results suggested that cheaper ( R )-4-phenyl-2-oxazolidinone, which is not a

[^1]
## Scheme 2





Reagents and conditions: (a) (R)-4-phenyloxazolidinone, pivaloyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$, toluene $(78 \%)$; (b) i) $\mathrm{n}-\mathrm{Bu}_{2} \mathrm{BOTf}$, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or toluene, $-20{ }^{\circ} \mathrm{C}$ to RT, ii) $30 \% \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{MeOH}$ ( $78 \%$ ); (c) $\mathrm{Ms}_{2} \mathrm{O}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 0^{\circ} \mathrm{C}$ or $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}\left(92 \%\right.$ ); (d) $\mathrm{NaBH}_{4}$, THF- $\mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ to RT ( $91 \%$ ); (e) $\mathrm{PhCH}_{2} \mathrm{NH}_{2}$ (10 eq.), $85{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}\left(60 \% \text { ); (f) } \mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C} \text {, EtOH ( } 92 \% \text { ); (g) (BOC) }\right)_{2} \mathrm{O}$, THF ( $82 \%$ ); (h) $\mathrm{NaIO}_{4}$, $\mathrm{RuCl}_{3} . \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CCl}_{4}\left(80 \%\right.$ ); (i) $\mathrm{MeOH}, \mathrm{HCl}, 50^{\circ} \mathrm{C}$, overnight ( $70 \%$ ); (j) MeOLi, MeOH , $0^{\circ} \mathrm{C}(50 \%)$.
commonly used auxiliary, is a suitable chiral auxiliary for the aldol reaction. Use of (R)-4-benzyl-2-oxazol idinone also gave the same diastereoselectivity in the aldol reaction. Mesylation of $\mathbf{5}$ with either methanesulfonic anhydride and pyridine in dichloromethane or methanesulfonyl chloride and triethylamine in toluene yielded the mesylate 6 in $92 \%$ yield. With 6 in hand, we were ready to construct the piperidine ring. We decided to use benzylamine, also used by Masamune to prepare a pyrrolidine ring, ${ }^{14}$ to construct the piperidine ring. Reaction of $\mathbf{6}$ with benzylamine at $85^{\circ} \mathrm{C}$ gave a complicated mixture, and no desired product $\mathbf{1 2}$ could be obtained. We postulated that the undesired ring opening of the 2-oxazolidinone by benzylamine and the steric bulk of this chiral auxiliary may be responsible for the unexpected outcome. To overcome this problem, we decided to replace the chiral auxiliary with the desired methyl ester functionality prior to the cyclization. The reaction of $\mathbf{6}$ with lithium methoxide ${ }^{15}$ in methanol at $0{ }^{\circ} \mathrm{C}$ yielded the expected methyl ester 13. Treatment of $\mathbf{1 3}$ with benzylamine yielded the cyclic product; however, it was characterized to be ( $\pm$ )-erythro-methylphenidate (14). These results could be explained based on the elimination of the mesylate, which destroyed both stereogenic centers; the $\alpha, \beta$-unsaturated ester intermediate then underwent a Michael addition with benzylamine, followed by cy-

[^2]dization. To circumvent the elimination problem, we decided to replace the methyl ester group with the corresponding alcohol function prior to the cyclization step and oxidize it back to the desired carboxylic ester functionality afterward. The desired alcohol 7 was directly prepared from 6 in $91 \%$ yield by the reductive removal of the chiral auxiliary with sodium borohydride in THF and water ${ }^{16}$ followed by a silica gel chromatography. This reductive removal was highly selective and no reduction of the chloride or the mesylate functionalities was observed. Treatment of alcohol $\mathbf{7}$ with benzylamine (10 equiv) at $85^{\circ} \mathrm{C}$ and purification by a silica gel chromatography afforded the desired piperidine intermediate 8 in $60 \%$ yield. The optical purity of $\mathbf{8}$ was ascertained by a chiral HPLC method. No ( 25,2 'S)enantiomer could be detected in 8 .

Having secured the two stereogenic centers and the piperidine ring in 8 , our next objective was to cleave the benzyl group and convert the al cohol group to the methyl ester. Oxidation of 8 with $\mathrm{H}_{5} \mathrm{O}_{6}$ in the presence of catalytic amounts of $\mathrm{CrO}_{3}$ in wet acetonitrile ${ }^{17}$ yielded the corresponding acid in $\sim 35 \%$ yield. These poor yields may be due to side reactions such as N -benzylic oxidation and the oxidation of the tertiary amine in $\mathbf{8}$. To circumvent this problem, we decided to replace the N -benzyl group with another protecting group which is stable

[^3]under oxidative conditions. tert-Butyloxycarbonyl (BOC) group was our first choice. Thus, hydrogenation of $\mathbf{8}$ in the presence of Pd-C (10\%) in ethanol yielded the amino alcohol 9 ( $92 \%$ yield), which was acylated with di-tertbutyl dicarbonate to afford N -BOC-protected al cohol 10 in $82 \%$ yield. Oxidation of $\mathbf{1 0}$ with $\mathrm{NaIO}_{4}$ and $\mathrm{RuCl}_{3}$ under reported conditions ${ }^{18}$ furnished the acid 11 in 80\% yield. Treatment of the acid $\mathbf{1 1}$ with methanol in the presence of HCl gas at $50^{\circ} \mathrm{C}$ yielded the desired ( $2 \mathrm{R}, 2^{\prime} \mathrm{R}$ )-threo-(+)-methyl phenidate hydrochloride (1) in 70\% yield. Optical purity of crude as well as crystalline $\mathbf{1}$ was > $99 \%$ as determined by a chiral HPLC method. All of the spectral and analytical data of $\mathbf{1}$ were identical to those of an authentic sample. ${ }^{3}$

In summary, we have described a novel and the first enantioselective synthesis of ( $2 R, 2^{\prime} R$ )-threo-(+)-methylphenidate hydrochloride with $>99 \%$ optical purity in a total of nine steps and 13.0\% overall yield starting from phenylacetic acid. The key steps in the sequence are Evans's asymmetric aldol reaction, our own selective reductive removal of the 2-oxazolidinone chiral auxiliary, an extension of Masamune's method to piperidine ring formation, and Sharpless's oxidation of a primary al cohol to the carboxylic acid. This strategy would allow access to analogues of $\mathbf{1}$ and the corresponding ( $2 \mathrm{~S}, 2^{\prime} \mathrm{S}$ )-enantiomer by using (S)-4-phenyl-2-oxazolidinone as the chiral auxiliary.

## Experimental Section

3-[7-Chloro-3-(S)-hydroxy-2-(R)-phenylheptanoyl]-4-(R)-phenyl-2-oxazolidinone (5). To a stirred solution of $3^{19}$ (8.5 $\mathrm{g}, 30.2 \mathrm{mmol}$ ) in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (or toluene) was added di-n-butylboryl trifluoromethanesulfonate ( $33 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) dropwise to maintain the internal temperature at $0^{\circ} \mathrm{C}$. After stirring for 5 min at $0^{\circ} \mathrm{C}$, diisopropylethylamine ( $4.6 \mathrm{~g}, 35.6$ mmol) was added dropwise, while maintaining the internal temperature at $0{ }^{\circ} \mathrm{C}$. The solution turned from dark orange to light yellow after this addition. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then cooled to $-20^{\circ} \mathrm{C}$. Aldehyde $4^{20}(4.02$ $\mathrm{g}, 33.2 \mathrm{mmol}$ ) in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at this temperature for 2 h and then allowed to warm to $22^{\circ} \mathrm{C}$. After stirring at $22^{\circ} \mathrm{C}$ for 3 h , the reaction was quenched by addition of phosphate buffer (pH $=7.2,20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30$ mL ), and the combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}$ solution ( 40 mL ), $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, and brine $(40 \mathrm{~mL})$. The organic layer was concentrated in vacuo. The crude oil was dissolved in $\mathrm{MeOH}(90 \mathrm{~mL}$ ) and cooled to an internal temperature at $0{ }^{\circ} \mathrm{C}$, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{~mL})$ was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then allowed to warm to $22^{\circ} \mathrm{C}$. After 1 h at room temperature, the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{~mL})$. The mixture was extracted with EtOAc ( $2 \times 200 \mathrm{~mL}$ ), and the combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}$ solution ( 50 mL ), $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and brine ( 50 mL ) and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was concentrated in vacuo to give the crude aldol product, which was purified by column chromatography on $\mathrm{SiO}_{2}$ (EtOAc/hexanes, 1:4) to give 5 ( $9.1 \mathrm{~g}, 78 \%$ ) as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-6.91(\mathrm{~m}, 10 \mathrm{H}), 5.47$ (dd, $1 \mathrm{H}, \mathrm{J}=9.0$, $5.0 \mathrm{~Hz}), 5.0(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}), 4.66(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.22-$ $4.14(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=9.0,5.0 \mathrm{~Hz}), 3.50(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $6.6 \mathrm{~Hz}), 2.66$ (bs, 1 H ), 1.82-1.36 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ( 125 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 173.3,152.7,137.8,132.8,130.2,129.0,128.7,128.3$, 127.8, 125.7, 71.3, 69.6, 57.6, 54.4, 44.8, 33.5, 32.3, 23.1. Anal.

[^4]Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{Cl}: \mathrm{C}, 65.75 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.49 ; \mathrm{Cl}, 8.82$. Found: C, 65.49; H, 6.34; N, 3.15; CI, 8.68. [ $\alpha]^{25}$ D +11.80 ( $\mathrm{c}=$ $0.61, \mathrm{MeOH}$ ); IR (neat, $\mathrm{cm}^{-1}$ ) 1780, 1697, 1601.
3-[7-Chloro-3-(S)-(methylsulfonyl)oxy-2-(R)-phenylhep-tanoyl]-4-(R)-phenyl-2-oxazolidinone (6). Method A. To a stirred solution of $\mathbf{5}(19.0 \mathrm{~g}, 47.3 \mathrm{mmol})$ in toluene $(150 \mathrm{~mL})$ was added methanesulfonyl chloride ( $8.9 \mathrm{~g}, 77.7 \mathrm{mmol}$ ). Triethylamine ( $8.7 \mathrm{~g}, 86.0 \mathrm{mmol}$ ) was then added over 20 min while maintaining an internal temperature at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched by addition of $1 \mathrm{~N} \mathrm{HCl}(20 \mathrm{~mL})$, water ( 100 mL ), and brine ( 50 mL ). The mixture was extracted with EtOAc ( $2 \times 125 \mathrm{~mL}$ ), and combined organic layers were washed sequentially with $0.1 \mathrm{~N} \mathrm{HCl}(100$ $\mathrm{mL})$, brine ( 100 mL ), saturated $\mathrm{NaHCO}_{3}$ sol ution ( $2 \times 100 \mathrm{~mL}$ ), and brine ( 100 mL ) and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was concentrated in vacuo to give the crude product, which was purified by column chromatography on $\mathrm{SiO}_{2}$ (EtOAc/hexanes, 1:4) to give 6 ( $21.1 \mathrm{~g}, 93 \%$ ) as an oil.

Method B. To a stirred solution of $5(3 \mathrm{~g}, 7.7 \mathrm{mmol})$ in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added methanesulfonic anhydride ( $1.6 \mathrm{~g}, 9.2$ mmol ) and pyridine ( $0.91 \mathrm{~g}, 11.6 \mathrm{mmol}$ ) at $0{ }^{\circ} \mathrm{C}$. After 3 h at 0 ${ }^{\circ} \mathrm{C}$, the reaction mixture was quenched by addition of 1 N HCl ( 20 mL ). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL}$ ), and the combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}$ solution $(30 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and brine $(30 \mathrm{~mL})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was concentrated in vacuo to give the crude product, which was purified by column chromatography on $\mathrm{SiO}_{2}$ (EtOAc/hexanes, 1:4) to give 6 ( $3.39 \mathrm{~g}, 92 \%$ ) as an oil: ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.34-7.15(\mathrm{~m}, 8 \mathrm{H}), 6.93$ (d, $2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}$ ), $5.50(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.9,4.7 \mathrm{~Hz}$ ), $5.37(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=9.5 \mathrm{~Hz}), 5.35-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 4.16$ (dd, $1 \mathrm{H}, \mathrm{J}=8.9,4.7 \mathrm{~Hz}$ ), $3.59(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $1.95-1.60(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz} \mathrm{CDCl}_{3}$ ) $\delta 170.3,153.3$, 138.1, 134.3, 130.6, 130.5, 129.3, 129.1, 128.9, 126.1, 84.1, 70.1, 58.1, 53.7, 44.9, 37.8, 33.8, 32.3, 22.2. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26}{ }^{-}$ $\mathrm{NSO}_{6} \mathrm{Cl}: \mathrm{C}, 57.55 ; \mathrm{H}, 5.46 ; \mathrm{N}, 2.92$; S, 6.68; CI, 7.38. Found: C, 57.28; H, 5.78; N, 3.15; S, 6.35; CI, 6.65. $[\alpha]^{25}$ D +9.83 ( $c=0.84$, MeOH ); IR (neat, $\mathrm{cm}^{-1}$ ) 1780, 1699.
$\alpha$-(S)-(4-Chlorobutyl)- $\beta$-(S)-(hydroxymethyl)benzeneethanol Methanesulfonate (7). To a stirred solution of 6 (1.45 g, 3.1 mmol ) in 25 mL of THF was added a solution of $\mathrm{NaBH}_{4}(0.45$ $\mathrm{g}, 11.8 \mathrm{mmol}$ ) in 4.5 mL of $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min and allowed to warm to $22^{\circ} \mathrm{C}$. After stirring at $22^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched by addition of 2 N HCl solution ( 7 mL ). The mixture was extracted with $\operatorname{EtOAc}(2 \times 30 \mathrm{~mL})$, and the combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}$ solution ( 20 mL ), $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and brine ( 20 mL ) and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was concentrated in vacuo to give the crude product, which was purified by column chromatography on $\mathrm{SiO}_{2}$ (EtOAc/hexanes, 1:2) to give $\mathbf{7}(0.9 \mathrm{~g}, 91 \%)$ as an oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ס 7.50-7.38 (m,5 H), 5.34-5.32 (m, 1 H$), 4.15$ (dd, $1 \mathrm{H}, \mathrm{J}=$ $11.5,9.3 \mathrm{~Hz}$ ), 3.94 (dd, $1 \mathrm{H}, \mathrm{J}=11.5,5.9 \mathrm{~Hz}$ ), $3.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ 6.4 Hz ), 3.23-3.19 (m, 1 H ), 3.05 (s, 3 H), 1.92-1.68 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 136.8,129.3,128.7,127.7,82.1$, 62.8, 51.6, 44.5, 38.3, 32.4, 31.9, 22.6. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21^{-}}$ $\mathrm{ClO}_{4} \mathrm{~S}: \mathrm{C}, 52.41 ; \mathrm{H}, 6.6 ; \mathrm{S}, 9.99 ; \mathrm{Cl}, 11.05$. Found: C, $52.47 ; \mathrm{H}$, $6.50 ; \mathrm{S}, 9.69 ; \mathrm{Cl}, 11.27 .[\alpha]^{25} \mathrm{D}+9.59(\mathrm{c}=0.86, \mathrm{MeOH}$ ); IR (neat, $\mathrm{cm}^{-1}$ ) 1495, 1454.
$\boldsymbol{\beta}$-(R)-P henyl-1-(phenylmethyl)-2-(R)-piperidineethanol (8). A solution of $\mathbf{7}(10 \mathrm{~g}, 31.3 \mathrm{mmol})$ in benzylamine ( 34 g , 317 mmol ) was stirred at $85^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was allowed to cool to $22^{\circ} \mathrm{C}$, and EtOAc ( 200 mL ) was added. The mixture was washed with saturated $\mathrm{NaHCO}_{3}$ solution (100 $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and brine ( 100 mL ) and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was concentrated in vacuo to give the crude product, which was purified by column chromatography on $\mathrm{SiO}_{2}$ (EtOAc/ hexanes, $1: 1$ ) to give $8(5.5 \mathrm{~g}, 60 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 7.38-6.89(\mathrm{~m}, 10 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ 10.3 Hz ), 3.67 (dd, $1 \mathrm{H}, \mathrm{J}=10.7,3.5 \mathrm{~Hz}$ ), 3.46 (td, $1 \mathrm{H}, \mathrm{J}=$ $10.7,3.3 \mathrm{~Hz}), 3.31-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{bd}, 1 \mathrm{H}, \mathrm{J}=14.9 \mathrm{~Hz})$, 1.80-0.88 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.8,138.5$, 129.1, 128.6, 127.8, 127.4, 126.7, 70.0, 63.0, 57.2, 45.2, 44.9, 20.5, 20.0, 18.9. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}$ : C, 81.31; H, 8.53; N, 4.74. Found: C, 81.11; H, 8.82; N, 4.41. $[\alpha]^{25} \mathrm{D}-51.83^{\circ}$ (c = 0.54, MeOH ).

The optical purity of $\mathbf{8}$ was determined by a chiral HPLC method on a Rainin Dynamax system using a Daicel Chiralpak AD column ( $4.6 \times 250 \mathrm{~mm}$ ) and a mixture of hexane/2-propanol/ TFA (88:12:0.1 mL) as the mobile phase (isocratic at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ and UV detector at 254 nm ). The retention time of 8 was 15.8 min , and that of its corresponding ( $2 \mathrm{~S}, 2^{\prime} \mathrm{S}$ )enantiomer was 19.7 min . No ( $2 \mathrm{~S}, 2^{\prime} \mathrm{S}$ )-enantiomer of $\mathbf{8}$ could be detected.
$\boldsymbol{\beta}$-(R)-Phenyl-2-(R)-piperidineethanol (9). To a solution of 8 ( $220 \mathrm{mg}, 0.74 \mathrm{mmol}$ ) in ethanol ( 7 mL ) in a Parr bottle was added $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$. The Parr bottle was flushed threetimes with $\mathrm{H}_{2}(50 \mathrm{psi})$ and then vibrated at room temperature with $\mathrm{H}_{2}(50 \mathrm{psi})$ for 4 h . The catalyst was filtered over a pad of Celite and washed with ethanol $(2 \times 5 \mathrm{~mL})$. The filtrate was concentrated in vacuo to give crude 9 ( $140 \mathrm{mg}, 92 \%$ ), which was used in the next step without purification: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.03(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.0,8.5 \mathrm{~Hz}), 3.86(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=11.0,4.0 \mathrm{~Hz}), 3.7-3.3(\mathrm{bs}, 2 \mathrm{H}), 3.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.3$, $2.7 \mathrm{~Hz}), 3.01$ (td, $1 \mathrm{H}, \mathrm{J}=10.0,2.4 \mathrm{~Hz}$ ), 2.73 (td, $1 \mathrm{H}, \mathrm{J}=8.7$, 4.0 Hz ), 2.63 (td, $1 \mathrm{H}, \mathrm{J}=12.3,3.1 \mathrm{~Hz}$ ), $1.74-1.0(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 140.4,128.6,128.1,126.8,68.3,62.8$, 51.8, 46.4, 31.7, 26.7, 24.2.

1-(tert-Butyloxycarbonyl)- $\beta$-(R)-phenyl-2-(R)-pi peridineethanol (10). To a solution of 9 ( $130 \mathrm{mg}, 0.63 \mathrm{mmol}$ ) in THF ( 5 mL ) were added $(\mathrm{BOC})_{2} \mathrm{O}(0.28 \mathrm{~g}, 1.26 \mathrm{mmol})$ and triethylamine ( $0.1 \mathrm{~mL}, 0.72 \mathrm{mmol}$ ). The solution was stirred at $22^{\circ} \mathrm{C}$ for 19 h . The reaction mixture was concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}$, to yield 10 ( $160 \mathrm{mg}, 82 \%$ ) as a white solid, $\mathrm{mp} 79-80^{\circ} \mathrm{C} .{ }^{10}$

1-(tert-Butyloxycarbonyl)- $\alpha$-(R)-phenyl-2-(R)-pi peridineacetic Acid (11). To a stirred solution of $\mathbf{1 0}$ ( $630 \mathrm{mg}, 2.06$ mmol ) in a mixed solvent ( $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}=8: 8: 12 \mathrm{~mL}$ ) were added $\mathrm{NaIO}_{4}(1.75 \mathrm{~g}, 8.2 \mathrm{mmol})$ and $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mg}, 0.05$ mmol ) at $22^{\circ} \mathrm{C}$. After stirring at $22^{\circ} \mathrm{C}$ for 2 h , the mixture was extracted with EtOAc ( $2 \times 50 \mathrm{~mL}$ ), and the combined organic
layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$. The solution was concentrated in vacuo to give the crude product, which was purified by column chromatography on $\mathrm{SiO}_{2}$ (EtOAchexanes, 1:2) to give 11 ( $520 \mathrm{mg}, 80 \%$ ) as a white solid, $\mathrm{mp} 117-119{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 7.46-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.03-4.80(\mathrm{bm}, 1 \mathrm{H}), 4.16(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $11.8 \mathrm{~Hz}), 4.12-3.92(\mathrm{bm}, 1 \mathrm{H}), 3.25-3.01(\mathrm{bm}, 1 \mathrm{H}), 1.75-1.12$ (m, 6 H ), $1.50(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 176.0$, 156.9, 138.6, 130.3, 130.2, 129.2, 81.7, 56.1, 54.9, 52.7, 41.6, 40.1, 29.0, 26.8, 20.1. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$ : C, 67.69; $\mathrm{H}, 7.89$; N, 4.39. Found: C, 67.54; H, 7.97; N, 4.41. [ $\alpha]^{25} \mathrm{D}-40.9$ (c = $1.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
(2R,2'R)-threo-(+)-Methylphenidate Hydrochloride (1). Into a solution of $\mathbf{1 1}(230 \mathrm{mg}, 0.75 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was bubbled HCl gas, and the solution was stirred at $50^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was concentrated in vacuo to give a residue. The residue was treated with tert-butyl methyl ether ( 10 mL ), and the resulting solid was collected by filtration and dried to give 1 ( $142 \mathrm{mg}, 70 \%$ ), $\mathrm{mp} 222-224^{\circ} \mathrm{C} .{ }^{3}$

The optical purity of crude as well as crystalline $\mathbf{1}$ was determined to be >99\% (no other diastereomers could be detected) by a chiral HPLC method on a Rainin Dynamax system using a Daicel Chiralpak AD column ( $4.6 \times 250 \mathrm{~mm}$ ) and a mixture of hexane/ethanol/methanol/TFA (96:2:2:0.1 mL) as the mobile phase (isocratic at a flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$ and UV detector at 230 nm ). The retention time of $\mathbf{1}$ was 15 min , and that of its corresponding ( $2 \mathrm{~S}, 2^{\prime} \mathrm{S}$ )-enantiomer was 13 min . The retention times of ( 2 'S,2R)- and ( $2^{\prime} R, 2 S$ )-erythro-methylphenidates were 13.5 and 16.5 min , respectively.

Acknowledgment. We thank Dr. Bin Hu for preparing an authentic sample of $( \pm)$-8.
J 09821473


[^0]:    (1) Rometsch, R. U.S. Patent 2,957,880, October 25, 1960.
    (2) Maxwell, R. A.; Chaplin, E.; Eckhardt, S. B.; Soares, J. R.; Hite, G. J. Pharmacol. Exp. Ther. 1970, 173, 158-165.
    (3) Prashad, M.; Har, D.; Repic, O.; Blacklock, T. J .; Giannousis, P. Tetrahedron: Asymmetry 1998, 9, 2133-2136.
    (4) Zeitlin, A. L.; Stirling, D. I. United States Patent No. 5,733,756, March 31, 1998.
    (5) F aul conbridge, S.; Zavareh, H. S.; Evans, G. R.; Langston, M. World Patent Application No. WO 98/25902, J une 18, 1998.
    (6) Patrick, K. S.; Caldwell, R. W.; Ferris, R. M.; Breese, G. R. J. Pharmacol. Exp. Ther. 1987, 241, 152-158.
    (7) Harris, M. C. J.; Zavareh, H. S. World Patent Application No. WO 97/27176, J uly 31, 1997.
    (8) Zavareh, H. S. World Patent Application No. WO 97/32851, September 12, 1997.
    (9) Zavareh, H. S. Potter, G. A. World Patent Application No. WO 98/31668, J uly 23, 1998.
    (10) Thai, D. L.; Sapko, M. T.; Reiter, C. T.; Bierer, D. E.; Perel, J . M. J. Med. Chem. 1998, 41, 591-601.

[^1]:    (11) Evans, D. A.; Bartoli, J.; Shih, T. L. J . Am. Chem. Soc. 1981, 103, 2127-2129.
    (12) Prashad, M.; Kim, H. Y.; Har, D.; Repic, O.; Blacklock, T. J. Tetrahedron Lett. 1998, 39, 9369-9372.
    (13) Leanna, M. R.; Sowin, T. J .; M orton, H. E. Tetrahedron Lett. 1992, 33, 5029-5032.

[^2]:    (14) Short, R. P.; Kennedy, R. M.; Masamune, S. J . Org. Chem. 1989, 54, 1755-1756.
    (15) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737-1739.

[^3]:    (16) Prashad, M.; Har, D.; Kim, H. Y.; Repic, O. Tetrahedron Lett. 1998, 39, 7067-7070.
    (17) Zhao, M.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J .; Reider, P. J. Tetrahedron Lett. 1998, 39, 5323-5326.

[^4]:    (18) Carlsen, P. H. J.; K atsuki, T.; Martin, V. S.; Sharpless, K. B J. Org. Chem. 1981, 46, 3936-3938.
    (19) Kise, N.; Tokioka, K.; Aoyama, Y. J. Org. Chem. 1995, 60, 1100-1101.
    (20) Kuehne, M. E.; M atsko, T. H.; Bohnert, J . C.; M otyka, L.; OliverSmith, D. J. Org. Chem. 1981, 46, 2002-2009.

